This article was downloaded by: On: *25 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Sulfur Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713926081

Synthesis and antimicrobial evaluation of some pyrazolo-thiazolyl alkoxy-1H-isoindole-1, 3(2H)-dione derivatives

Jawahar L. Jat^a; Vijay K. Salvi^a; G. L. Talesara^a; H. Joshi^b

^a Department of Chemistry, M. L. Sukhadia University, Udaipur (Raj.), India ^b Department of Biotechnology, M. L. Sukhadia University, Udaipur (Raj.), India

To cite this Article Jat, Jawahar L. , Salvi, Vijay K. , Talesara, G. L. and Joshi, H.(2006) 'Synthesis and antimicrobial evaluation of some pyrazolo-thiazolyl alkoxy-1H-isoindole-1, 3(2H)-dione derivatives', Journal of Sulfur Chemistry, 27: 5, 445 - 453

To link to this Article: DOI: 10.1080/17415990600904697 URL: http://dx.doi.org/10.1080/17415990600904697

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Research Article

Synthesis and antimicrobial evaluation of some pyrazolo-thiazolyl alkoxy-1H-isoindole-1, 3(2H)-dione derivatives

JAWAHAR L. JAT[†], VIJAY K SALVI[†], G. L. TALESARA^{*†} and H. JOSHI[‡]

†Department of Chemistry and ‡Department of Biotechnology M. L. Sukhadia University, Udaipur (Raj.), India

(Received 21 April 2006; in final form 11 July 2006)

1,3-Thiazolidine-2,4-dione **2** has been synthesized by the cyclisation reaction of thiourea and chloroacetic acid in the presence of ethanol. The reaction of compound **2** with substituted aromatic aldehyde afforded the corresponding derivatives of substituted 5-benzylidene-1,3-thiazolidinone-2,4-dione **3a–d**, which upon reflux with ω -bromoalkoxyphthalimide gave 2-{[-5-(substituted benzylidine)-2,4-dioxo-1,3-thiazolidine-3-yl]alkoxy}-1H-isoindole-1,3(2H)-dione **4a–i**. Further, compounds **4a–i** were treated with phenyl hydrazine and 2,4 dinitro phenyl hydrazine in the DMF to yield the title compound 2-[5-oxo-2,3-substituted diphenyl-2H-pyrazolo[3,4-d][1,3]thiazol-6(5H)-yl)alkoxy]-1H-isoindole-1,3(2H)-dione **5a–r**. Structures of newly synthesized compounds were established based on elemental analysis, IR, ¹H NMR and mass spectral data. Synthesized compounds have been assayed for their antibacterial activities against *B. subtilis, K. pneumoniae, P. aeruginosa* and *S. aureus* and antifungal activities against *A. fumigatus* and *C. albicans*.

Keywords: 2-Iminothiazolidinones; 5-Benzylidine-1,3-thiazolidinone-2,4-dione; Pyrazolo[3,4-d] [1,3]thiazol; Alkoxyphthalimides; Bio-assay

1. Introduction

Heterocyclic bearing nitrogen and sulfur atoms constitute the core structure of a number of biologically interesting compounds. Thiazolidinones and thiazolidinediones were the first parent compounds in which thiazole ring was recognized [1]. A large number of thiazolidinones are reported in literature for their biological activities such as anticonvulsant [2] anti-inflammatory [3, 4], hypnotic [5], amoebicidal [6], analgesic [7], anti AIDS [8], etc. 4-Thiazolidinone derivatives substituted at 2, 3, 4 or 5 positions are antidiabetic drugs [9]. Pyrazole derivatives are also reported to possess antifungal [10], antidiabetic [11], herbicidal [12], antifertility [13], sedative [14] and antimicrobial activities [15], etc. Phthalimidoxy and other aminoxy compounds are known to possess wide range of biological activities like antimalarial, CNS depressant, antihypertensive and antimicrobial [16–19], etc.

Journal of Sulfur Chemistry ISSN 1741-5993 print/ISSN 1741-6000 online © 2006 Taylor & Francis http://www.tandf.co.uk/journals DOI: 10.1080/17415990600904697

^{*}Corresponding author. Email: gtalesara@yahoo.com

Recently some substituted 1H-pyrazole-thiazolidine as anti-inflammatory and antimicrobial agent have been recognized [20]. Study of various pyrazole and substituted thiazole has shown a direct correlation between compound structure and antimicrobial activity. In continuation of our interest in the synthesis of novel aminooxy containing heterocyclic framework, the plan was to design and synthesize a new class of combinational molecule in which all of these moieties are present, with the hope to achieve enhanced biological activity.

2. Result and discussion

In the present work an effort has been made to synthesize various substituted 5-benzylidine-1,3-thiazolidine-2,4-diones **3a–d** and their various alkoxy phthalimide derivatives 2-[5-oxo-2,3-substituted diphenyl-2H-pyrazolo[3,4-d][1,3]thiazol-6(5H)-yl) alkoxy]-1H-isoindole-1,3 (2H)-dione **5a–r** using a multistep process.

ω-Bromoalkoxy phthalimides (**1a–c**) were prepared by the reported method. In this method N-hydroxyphthalimide and ω, ω'-dibromoalkane were kept overnight (17–22 h) in dimethylformamide medium using triethylamine as base. Disappearance of the N-OH group resonance at 6.2 (singlet) along with new resonance for the alkyl side chain confirmed the reaction. Syntheses of **3a–d** are achieved by the chemoselective reaction of reactive methylene group of compound **2** with various aromatic aldehyde to form α-β unsaturated moiety in the presence of base. Compound **2** was prepared by the cyclization of thiourea with chloroacetic acid in ethanol media. Finally, treatment with 20% KOH achieved hydrolysis of the imino group (scheme 1).

Compounds **3a–d** were condensed with various ω -bromoalkoxyphthalimide in the presence of absolute alcohol and catalytic amount of pyridine to give 2-{[-5-(substituted benzylidine)-2,4-dioxo-1,3-thiazolidine-3-yl]alkoxy}-1H-isoindole-1,3(2H)-dione **4a–i**. In the present

SCHEME 1

investigation, we have used various organic bases like pyridine, piperidine, triethylamine, piperazine, trimethylamine and inorganic bases like NaOH, NaH, anh. K₂CO₃ or Na₂CO₃ were also tried for above reactions. Reaction gave poor yields when TEA was used and required longer refluxing time whereas piperidine and piperazine gave generally sticky product. Better yields were obtained when pyridine was used as a base. Inorganic bases gave decomposed product. Condensation of ω -bromoalkoxyphthalimide at the N-atom was confirmed by IR spectroscopy. The stretching vibration band for -NH group at 3300–3100 cm⁻¹ disappeared and a strong band at 1300–1160 cm⁻¹ appeared for the C–N stretching of the CH₂–N–CO group confirming the formation of a new C–N band. Compounds **4a–i** further refluxed with substituted phenyl hydrazine in DMF media gave the title compounds **5a–r** (scheme 2). Formation of these compounds were confirmed by the appearance of a new C=N stretching at 1602–1626 cm⁻¹ in IR and disappearance of ¹H NMR signal at 6.2 δ for C=CH–Ar group. The structure of all the synthesized compounds have been assigned on the basis of their spectral data and elemental analysis which have been given in the tables 1 and 2, respectively.

Compounds	m.p./°C (solvent)	Colour yield (%)	Mol Formula	Elemental analysis [calcd/found (%)]			
			(Mol. Wt.)	С	Н	Ν	S
4a	270 EtOH	Yellow 72	$\begin{array}{c} C_{20}H_{13}N_{3}O_{7}S\\ 439.39 \end{array}$	54.67 54.60	2.98 2.91	9.56 9.51	7.30 7.26
4b	205 EtOH	Dark yellow 70	$\begin{array}{c} C_{20}H_{13}ClN_2O_5S\\ 428.84 \end{array}$	56.01 55.80	3.06 3.01	6.53 6.50	7.48 7.44
4c	192 EtOH	Yellow 71	$\substack{C_{21}H_{16}N_2O_6S\\424.42}$	59.43 59.28	3.80 3.72	6.60 6.58	7.55 7.51
4d	230 EtOH	Pale yellow 68	$\begin{array}{c} C_{21}H_{15}N_{3}O_{7}S\\ 453.42\end{array}$	55.63 55.40	3.33 3.30	9.27 9.96	7.07 7.00
4e	209 EtOH	Yellow 65	C ₂₁ H ₁₅ ClN ₂ O ₅ S 442.87	56.95 56.70	3.41 3.37	6.33 6.31	7.24 7.17
4f	216 EtOH	Orange yellow 67	$\begin{array}{c} C_{22}H_{18}N_2O_6S\\ 438.45\end{array}$	60.27 60.08	4.14 4.11	6.39 6.37	7.31 7.26
4g	202 EtOH	Yellow 66	$\begin{array}{c} C_{22}H_{17}N_{3}O_{7}S\\ 467.45\end{array}$	56.53 56.32	3.67 3.63	8.99 8.98	6.86 6.83
4h	242 EtOH	Yellow 70	C ₂₂ H ₁₇ ClN ₂ O ₅ S 456.89	57.83 57.72	3.75 3.70	6.13 6.11	7.02 7.00
4i	189 EtOH	Yellow 60	$\begin{array}{c} C_{23}H_{20}N_2O_6S\\ 452.47\end{array}$	61.05 60.85	4.46 4.39	6.19 6.18	7.09 7.02
5a	268 СН ₃ СООН	Dark Brown 58	$\begin{array}{c} C_{26}H_{15}N_7O_{10}S\\ 617.50\end{array}$	50.57 50.42	2.45 2.40	15.88 15.70	5.19 5.12
5b	240 CH ₃ COOH	Brown 55	C ₂₆ H ₁₅ ClN ₆ O ₈ S 606.95	51.45 51.38	2.49 2.43	13.85 13.79	5.28 5.22
5c	291 CH ₃ COOH	Brown 52	$\begin{array}{c} C_{27}H_{18}N_6O_9S\\ 602.53\end{array}$	53.82 53.40	3.01 2.98	13.95 13.85	5.32 5.26
5d	253 СН ₃ СООН	Brown 59	C ₂₇ H ₁₇ N ₇ O ₁₀ S 631.58	51.35 51.22	2.17 2.11	15.53 15.48	5.08 5.01
5e	278 CH ₃ COOH	White 63	C ₂₇ H ₁₇ ClN ₆ O ₈ S 620.97	52.22 52.12	2.76 2.71	13.53 13.49	5.16 5.11
5f	294 CH ₃ COOH	White 62	$\begin{array}{c} C_{28}H_{20}N_6O_9S\\ 616.55\end{array}$	54.54 54.48	3.27 3.22	13.63 13.60	5.20 5.16
5g	>300 CH ₃ COOH	White 65	C ₂₈ H ₁₉ N ₇ O ₁₀ S 645.55	52.09 52.01	2.97 2.92	15.19 15.17	4.57 4.53
5h	290 CH ₃ COOH	White 67	C ₂₈ H ₁₉ ClN ₆ O ₈ S 635	52.96 52.89	3.02 3.01	13.23 13.19	5.05 5.02
5i	>300 CH ₃ COOH	Light brown 65	$\begin{array}{c} C_{29}H_{22}N_6O_9S\\ 630.58\end{array}$	55.24 55.08	3.52 3.48	13.33 13.29	5.05 5.00
5j	240 CH ₃ COOH	Light brown 67	$\begin{array}{c} C_{26}H_{17}N_5O_6S\\527.50\end{array}$	59.20 59.09	3.28 3.22	13.28 13.24	6.08 6.03
5k	227 СН ₃ СООН	Brown 53	C ₂₆ H ₁₇ ClN ₄ O ₄ S 516.95	60.41 60.38	3.31 3.26	10.82 10.79	6.20 6.18
51	276 CH ₃ COOH	Brown 54	$\begin{array}{c} C_{27}H_{20}N_4O_5S\\ 512.53\end{array}$	63.27 63.21	3.93 3.89	10.93 10.88	6.26 6.21
5m	253 CH ₃ COOH	Brown 59	$\begin{array}{c} C_{27}H_{19}N_5O_6S\\541.53\end{array}$	59.88 59.72	3.54 3.51	12.93 12.90	5.92 5.90
5n	270 CH ₃ COOH	Dark brown 61	C ₂₇ H ₁₉ ClN ₄ O ₄ S 530.98	61.07 60.95	3.61 3.58	10.55 10.51	6.04 6.01
50	278 CH ₃ COOH	Dark brown 65	$\begin{array}{c} C_{28}H_{22}N_4O_5S\\526.56\end{array}$	63.87 63.77	4.21 4.19	10.64 10.49	6.09 6.07
5p	273 CH ₃ COOH	Dark brown 59	$\begin{array}{c} C_{28}H_{21}N_5O_6S\\ 555.56\end{array}$	60.53 60.42	3.81 3.79	12.61 12.58	5.77 5.75
5q	260 СН ₃ СООН	Dark brown 62	C ₂₈ H ₂₁ ClN ₄ O ₄ S 545.56	61.71 61.68	3.88 3.86	10.28 10.26	5.88 5.86
5r	283 CH ₃ COOH	Dark brown 58	$C_{28}H_{24}N_4O_5S\\540.58$	64.43 64.39	4.47 4.46	10.36 10.31	5.93 5.91

Table 1. Characterization data of the newly synthesized compounds.

wly synthesized compounds.

Compound number	Spectra
4a	ν (cm ⁻¹): 3040 (C–H, ArH), 2892 (C–H, CH ₂), 1695 (C–O str, C=O),1725 (C=O str, thiazolidinone ring), 1535–1342 (N–O str, NO ₂), 1751 (C=O str., CO–N–CO), 1208 (C–N), 1188 (C–O), 700 (disub. benzene), 685 (C–S–C)
	J = 8.5 Hz], 6.63 (s, 1H, C=CH-Ar), 3.32 (t, 2H, OCH ₂ , $J = 6 Hz$), 2.96 (t, 2H, NCH ₂)
4b	ν (cm ⁻¹):3045 (C–H, ArH), 2894 (C–H, CH ₂), 1696 (C–O str., C=O), 1728 (C=O str., thiazolidinone ring), 1748 (CO–N–CO), 1216 (C–N), 1186 (C–O), 854 (disubs. benzene), 682 (C–S–C)
	δ_H (ppm): 7.10–7.67 (m, 8H, ArH, $J = 8.7$ Hz), 6.58 (s, 1H, C=CH–Ar), 3.43 (t, 2H, OCH ₂ , $J = 6.8$ Hz), 3.07 (t, 2H, NCH ₂)
4c	ν (cm ⁻¹): 3038 (C–H, ArH), 2887 (C–H, CH ₂), 2928 (C–H, CH ₃), 1694 (C–O str., C=O), 1746 (CO–N–CO), 1722 (C=O str, thiazolidinone ring), 1222 (C–N), 1181 (C–O), 860, 680 (C–S–C).
	$\delta_{\rm H}$ (ppm): 7.09–7.66 (m, 8H, ArH, $J = 9$ Hz, $J = 1.5$ Hz), 6.38 (s, 1H, C=CHAr), 3.33 (t, 2H, O-CH ₂ , $J = 6.5$ Hz), 3.13 (t, 2H, NCH ₂), 3.67 (s, 3H, OCH ₃)
4d	ν (cm ⁻¹): 3044 (C–H, ArH), 2886 (C–H, CH ₂), 1698 (C=O), 1724 (C=O str, thiazolidinone ring), 1538–1332 (NO ₂), 1750 (CO–N–CO), 1208 (C–N), 1192 (C–O), 792, 689 (C–S–C).
	$\delta_{\rm H}$ (ppm): 7.2–7.76 (m, 8H, ArH, $J = 8.4$ Hz), 6.62 (s, 1H, C=CH Ar), 3.36 (t, 2H, OCH ₂ , $J = 6.6$ Hz), 2.64 (q, 2H, OCH ₂ –CH ₂ –CH ₂ –N), 3.09 (t, 2H, NCH ₂).
4e	ν (cm ⁻¹): 3045 (C–H, ArH), 2891 (C–H, CH ₂), 1693 (C=O), 1744 (CO–N–CO), 1724 (C=O str, thiazolidinone ring), 1220 (C–N), 1180 (C–O), 852 (ArH), 683 (C–S–C). $δ_{\rm H}$ (ppm): 7.16–7.70 (m, 8H, ArH, $J = 9.8$ Hz), 6.52 (s, 1H, C=CH Ar), 3.44 (t, 3H, OCH ₂ , $J = 6.7$ Hz), 3.12 (t, 2H, CH ₂ –N), 2.66 (a, 2H, OCH ₂ –CH ₂ –CH ₂ –N).
4f	ν (cm ⁻¹): 3038 (C–H, ArH), 2886 (C–H, CH ₂), 2936 (C–H, CH ₃), 1683 (C=O), 1751 (CO–N–CO), 1729 (C=O str, thiazolidinone ring), 1215 (C–N), 1187 (C–O), 847 (ArH), 687 (C–S–C)
	$\delta_{\rm H}$ (ppm): 7.07–7.76 (m, 8H, ArH, $J = 7$ Hz), 6.44 (s, 1H, C=CH Ar), 3.67 (s, 3H, OCH ₃), 3.42 (t, 2H, OCH ₂), 2.92 (t, 2H, CH ₂ N), 2.67 (q, 2H, OCH ₂ -CH ₂ -CH ₂ -N)
4g	ν (cm ⁻¹): 3042 (C–H, ArH), 2896 (C–H, CH ₂), 1693 (C=O), 1746 (CO–N–CO), 1727 (C=O str, thiazolidinone ring), 1226 (C–N), 1193 (C–O), 794 (ArH), 685 (C–S–C). $δ_{\rm H}$ (ppm): 7.0–7.78 (m, 8H, ArH, $J = 8.5$ Hz), 6.68 (s, 1H, C=CHAr), 3.46 (t, 2H, OCH ₂ , $J = 7$ Hz), 2.95 (t, 2H, NCH ₂), 2.86 (q, 2H, OCH ₂ –CH ₂ –CH ₂ –CH ₂ –N), 2.59 (q, 2H, OCH ₂ –CH ₂ –CH ₂ –CH ₂ –CH ₂ –CH ₂ –N),
4h	ν (cm ⁻¹): 3047 (C−H, ArH), 2893 (C−H, CH ₂), 1683 (C=O), 1749 (CO−N−CO), 1724 (C=O str, thiazolidinone ring), 1211 (C−N), 1186 (C−O), 854 (ArH), 682 (C−S−C). $δ_{\rm H}$ (ppm): 7.0–7.78 (m, 8H, ArH, $J = 8.0$ Hz), 6.54 (s, 1H, C=CHAr), 3.42 (t, 2H, O−CH ₂ , $J = 6.9$ Hz), 2.97 (t, 2H, CH ₂ −N), 2.81 (q, 2H, O−CH ₂ −CH ₂ −
4i	$\begin{split} \nu \ (\rm cm^{-1}): \ 3037 \ (\rm C-H, \ ArH), \ 2893 \ (\rm C-H, \ CH_2), \ 2933 \ (\rm C-H, \ CH_2), \ 1693 \ (\rm C=O), \ 1746 \\ (\rm CO-N-CO), \ 1727 \ (\rm C=O \ str, \ thiazolidinone \ ring), \ 1219 \ (\rm C-N), \ 1181 \ (\rm C-O), \ 858 \ (ArH), \\ 684 \ (\rm C-S-C). \\ \delta_{\rm H} \ (\rm ppm): \ 7.0-7.52 \ (m, \ 8H, \ ArH, \ J = 7 \ Hz), \ 6.48 \ (s, \ 1H, \ \rm C=CHAr), \ 3.66 \ (s, \ 3H, \ OCH_3), \ 3.40 \ (t, \ 2H, \ OCH_2, \ J = 6.6 \ Hz), \ 2.90 \ (t, \ 2H, \ -CH_2N), \ 2.74 \ (q, \ 2H, \ OCH_2-CH_2-CH_2-CH_2-N), \end{split}$
5a	2.65 (q, 2H, OCH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -N). ν (cm ⁻¹): 3052 (CH, ArH), 2898 (C-H str, CH ₂), 1724 (C=O str, thiazolidinone ring), 1550–1348 (N-O str, NO ₂), 1748 (CO-N-CO), 1208 (C-N), 1189 (C-O), 1605 (C=N), 1176 (N-N str), 740 (disub. benz), 689 (C-S-C str), $\delta_{\rm H}$ (ppm): 7.23–7.59 (m, 8H, ArH, $J = 8$ Hz), 7.6–7.77 (m, 3H, dinitro benz, $J = 1.7$ Hz, J = 8.5 Hz), 3.51 (t, 2H, OCH ₂ , $J = 6$ Hz), 2.92 (t, 2H, CH ₂ N) Mass m/z: 617 (3), 427 (77), 399 (72), 231 (42), 203 (11), 190 (100), 162 (11)
5c	$\begin{split} \nu \ (\rm cm^{-1}): \ 3062 \ (\rm CH, \ ArH), \ 2893 \ (\rm C-H \ str, \ CH_2), \ 1723 \ (\rm C=O \ str, \ thiazolidinone \ ring), \\ 1549-1346 \ (\rm N-O \ str, \ NO_2), \ 1748 \ (\rm CO-N-CO), \ 1216 \ (\rm C-N), \ 1189 \ (\rm C-O), \ 1609 \ (\rm C=N), \\ 1178 \ (\rm N-N \ str), \ 840 \ (disub. \ benz), \ 689 \ (\rm C-S-C \ str) \\ \delta_{\rm H} \ (\rm ppm): \ 7.1-7.68 \ (m, \ 8H, \ ArH, \ J = 8.8 \ Hz), \ 7.69-781 \ (m, \ 3H, \ dintro \ benz, \ J = 1.9 \ Hz, \\ J = 9.3 \ Hz), \ 3.52 \ (t, \ 2H, \ OCH_2, \ J = 6.6 \ Hz), \ 2.91 \ (t, \ 2H, \ CH_2N). \\ \mbox{Mass } m/z: \ 602 \ (4), \ 412 \ (75), \ 384 \ (68), \ 217 \ (40), \ 189 \ (13), \ 190 \ (100), \ 162 \ (10), \ 146 \ (18), \ 132 \ (80), \ 104 \ (8), \ 76 \ (12) \end{split}$

Downloaded At: 12:05 25 January 2011

Table 2. Continued.

Compound number	Spectra
5e	ν (cm ⁻¹): 3064 (CH, ArH), 2896 (C–H str, CH ₂), 1728 (C=O str, thiazolidinone ring), 1545–1340 (N–O str, NO ₂), 1748 (CO–N–CO), 1213 (C–N), 1189 (C–O), 1619 (C=N), 1179 (N–N str), 850 (disub. benz), 686 (C–S–C str). $\delta_{\rm H}$ (ppm): 7.15–7.68 (m, 8H, ArH, $J = 7$ Hz), 7.78 (m, 3H, $J = 8$ Hz), 3.58 (t, 2H, OCH ₂ , J = 7.0 Hz), 2.88 (t, 2H, OCH ₂), 2.65 (q, 2H, OCH ₂ CH ₂ CH ₂ N). Mass m/z: 620 [M] ⁺ , 622 [M+2] (3), 418 (73), 390 (65), 223 (37), 204 (100), 162 (12), 146 (17), 132 (78), 104 (9.5), 76 (14)
5f	ν (cm ⁻¹): 3054 (CH, ArH), 2892 (C–H str, CH ₂), 2924 (C–H, OCH ₃), 1725 (C=O str, thiazolidinone ring), 1542–1336 (N–O str, NO ₂), 1744 (CO–N–CO), 1217 (C–N),1184 (C–O), 1614 (C=N), 1173 (N–N str), 854 (disub. benz), 684 (C–S–C str), $\delta_{\rm H}$ (ppm): 7.13–7.60 (m, 8H, ArH, $J = 9$ Hz), 7.77 (m, 3H, ArH, $J = 8$ Hz), 3.33 (t, 2H, OCH ₂ , $J = 6.9$ Hz), 2.94 (t, 2H, CH ₂ N), 2.73 (q, 2H, O CH ₂ CH ₂ CH ₂ N), 3.63 (s, 3H, OCH ₃) Mass m/z: 616 (2.5), 412 (72), 384 (63), 217 (36), 204 (100), 162 (13), 146 (17.5), 132 (78), 104 (9), 76 (13)
5i	ν (cm ⁻¹): 3064 (CH, ArH), 2895 (C−H str, CH ₂), 2935 (C−H, OCH ₃), 1727 (C=O str, thiazolidinone ring), 1744 (CO−N−CO), 1210 (C−N), 1188 (C−O), 1610 (C=N), 1176 (N−N str), 844 (disub. benz), 688 (C−S−C str). $\delta_{\rm H}$ (ppm): 7.07–7.59 (m, 8H, ArH, $J = 8.5$ Hz), 7.64 (m, 3H, ArH, $J = 7.6$ Hz), 3.56 (s, 3H, OCH ₃), 3.32 (t, 2H, OCH ₂ , $J = 6.7$ Hz), 2.86 (t, 2H, CH ₂ N), 2.70 (q, 2H, O CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ N), 2.52 (q, 2H, OCH ₂ CH ₂ CH ₂ CH ₂ N) Mass m/z: 630 (1.8), 412 (77), 384 (67), 217 (44), 189 (12), 218 (100), 162 (12), 146 (18.8), 132 (77), 104 (10), 76 (12)
5k	$\begin{split} \nu \ (\rm cm^{-1}): \ 3058 \ (\rm CH, \ ArH), \ 2888 \ (\rm C-H \ str, \ CH_2), \ 1729 \ (\rm C=O \ str, \ thiazolidinone \ ring), \ 1749 \\ (\rm CO-N-CO), \ 1214 \ (\rm C-N), \ 1181 \ (\rm C-O), \ 1609 \ (\rm C=N), \ 1177 \ (\rm N-N \ str) \ 842 \ (disub. \ benz), \\ 682 \ (\rm C-S-C \ str). \\ \delta_{\rm H} \ (\rm ppm): \ 7.4-7.69 \ (m, \ 8H, \ ArH, \ J = 8 \ Hz), \ 7.0-7.35 \ (m, \ 5H, \ ArH, \ J = 7 \ Hz, \ J = 2 \ Hz), \\ 3.51 \ (t, \ 2H, \ OCH_2, \ J = 6.8 \ Hz), \ 2.89 \ (t, \ 2H, \ CH_2N) \\ {\rm Mass \ m/z: \ 516 \ [M]^+, \ 518[M+2] \ (2), \ 328 \ (75), \ 300 \ (66), \ 189 \ (42), \ 161 \ (13), \ 190 \ (100), \ 162 \ (10), \ 146 \ (16), \ 132 \ (80), \ 104 \ (9), \ 76 \ (13), \ 51 \ (14) \end{split}$
5m	$\begin{split} \nu \ (\rm{cm}^{-1}): \ 3054 \ (\rm{CH}, \ Ar\rm{H}), \ 2898 \ (\rm{C}-H \ str, \ CH_2), \ 1722 \ (\rm{C}=O \ str, \ thiazolidinone \ ring), \\ 1547-1338 \ (\rm{N}-O \ str, \ NO_2), \ 1748 \ (\rm{C}O-N-CO), \ 1216 \ (\rm{C}-N), \ 1187 \ (\rm{C}-O), \ 1606 \ (\rm{C}=N), \\ 1179 \ (\rm{N}-N \ str), \ 754 \ (disub. \ benz), \ 684 \ (\rm{C}-S-C \ str), \\ \delta_{\rm H} \ (\rm{ppm}): \ 7.48-7.69 \ (m, \ 8H, \ Ar\rm{H}, \ J = 7.8 \ Hz), \ 7.0-7.18 \ (m, \ 5H, \ Ar\rm{H}, \ J = 7.5 \ Hz, \\ J = 2.4 \ Hz), \ 3.55 \ (t, \ 2H, \ O\rm{CH}_2, \ J = 6.7 \ Hz), \ 2.68 \ (q, \ 2H, \ O\rm{CH}_2\rm{CH}_2\rm{CH}_2\rm{N}), \ 2.92 \ (t, \ 2H, \ CH_2\rm{N}) \\ Mass \ m/z: \ 541 \ (3), \ 337 \ (75), \ 309 \ (63), \ 187 \ (42), \ 159 \ (13), \ 204 \ (100), \ 162 \ (11), \ 146 \ (15), \ 132 \ (78), \ 104 \ (10), \ 76 \ (14) \end{split}$
50	ν (cm ⁻¹): 3056 (CH, ArH), 2882 (C−H str, CH ₂), 2928 (C−H, OCH ₃), 1725 (C=O str, thiazolidinone ring), 1749 (CO−N−CO), 1219 (C−N), 1179 (C−O), 1611 (C=N), 1174 (N−N str), 860 (disub. benz), 687 (C−S−C str). $δ_{\rm H}$ (ppm): 7.3–7.77 (m, 8H, ArH, $J = 8.5$ Hz), 7.14–7.29 (m, 5H, ArH, $J = 9.7$ Hz, $J = 2.2$ Hz), 3.58 (s, 3H, OCH ₃ , $J = 6.9$ Hz), 3.35 (t, 2H, OCH ₂), 2.88 (t, 2H, CH ₂ N), 2.70 (q, 2H, OCH ₂ CH ₂ CH ₂ N) Mass m/z: 526 (3), 322 (74), 294 (65), 187 (45), 159 (10), 204 (100), 162 (115), 146 (19), 132 (78), 104 (9), 76 (13), 51 (15.5)
5p	$\begin{split} \nu \ (\rm{cm}^{-1}):&3051 \ (\rm{CH}, \rm{ArH}), 2892 \ (\rm{C}-\rm{H} \ str, \ \rm{CH}_2), 1728 \ (\rm{C}=\rm{O} \ str, \ \rm{thiazolidinone \ ring}), \\ &1548-1335 \ (\rm{N}-\rm{O} \ str, \ \rm{NO}_2), 1741 \ (\rm{CO}-\rm{N}-\rm{CO}), 1209 \ (\rm{C}-\rm{N}), 1187 \ (\rm{C}-\rm{O}), 1618 \ (\rm{C}=\rm{N}), \\ &1174 \ (\rm{N}-\rm{N} \ str), 758 \ (\rm{disub. \ benz}), 684 \ (\rm{C}-\rm{S}-\rm{C} \ str). \\ \delta_{\rm H} \ (\rm{ppm}): \ 7.41-7.64, \ (m, \ 8H, \ ArH, \ J = 8 \ Hz), 7.12-7.29 \ (m, \ 5H, \ ArH, \ J = 9 \ Hz), 3.19 \ (t, \\ &2H, \ \rm{OCH}_2, \ J = 7 \ Hz), 2.86 \ (t, \ 2H, \ \rm{CH}_2\rm{N}), 2.69 \ (q, \ 2H, \ \rm{OCH}_2\rm{CH}_2\rm{CH}_2\rm{CH}_2\rm{N}), 2.54 \ (q, \\ &2H, \ \rm{OCH}_2\rm{CH}_2\rm{CH}_2\rm{CH}_2\rm{CH}_2\rm{N}) \end{split}$
5r	ν (cm ⁻¹): 3058 (CH, ArH), 2890 (C−H str, CH ₂), 2929 (C−H, OCH ₃), 1729 (C=O str, thiazolidinone ring), 1549–1336 (N−O str, NO ₂), 1743 (CO−N−CO), 1217 (C−N), 1185 (C−O), 1619 (C=N), 1178 (N−N str), 858 (disub. benz), 688 (C−S−C str). $δ_{\rm H}$ (ppm): 7.34–7.72 (m, 8H, ArH, $J = 9.5$ Hz), 7.27 (m, 5H, ArH, $J = 8$ Hz), 3.64 (s, 3H, OCH ₃ , $J = 6$ Hz), 3.28 (t, 2H, OCH ₂), 2.84 (t, 2H, CH ₂ N), 2.71 (q, 2H, OCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ N), 2.63 (t, 2H, OCH ₂ CH ₂ CH ₂ CH ₂ N), 2.63 (t, 2H, OCH ₂ CH ₂ CH ₂ N) Mass m/z: 540 (3), 322 (76), 294 (66), 187 (46), 159 (15), 218 (100), 162 (13), 146 (20), 132 (82), 104 (12), 76 (13), 51 (15)

	Antibacterial activity				Antifungal activity		
Compound	K. pneumoniae	P. aeruginosa	S. aureus	B. subtilis	A. fumigatus	C. albicans	
5a	+ + +	++	++	+	+++	+	
5b	++	++	_	++	+	+ + +	
5c	++	++	++	+	+	++	
5d	+ + +	++	++	_	++	+	
5e	++	_	+	_	+	++	
5f	++	+	++	+	+ + + +	+	
5g	+	+	_	_	++	+	
5h	+	_	_	_	+ + + +	++	
5i	+	+	+	_	++	+	
5j	++	++	+	+	+ + +	++	
5k	++	+	++	+	++	+	
51	_	++	+	_	+ + +	+	
5m	++	_	_	_	++	+	
5n	+	_	+	_	+	++	
50	++	+	+	+	+	+ + +	
5p	+	_	_	+	+	+	
5q	+	+	+	_	+	++	
5r	+	_	_	+	+	+	
\mathbf{C}_1	+++++	+ + + +	+ + + +	++++	_	_	
$\dot{\mathbf{C}}_2$	_	_	_	_	+ + + +	+ + + +	

Table 3. Response of various microorganisms to some synthesized compounds in vitro culture.

Zone of inhibition: - = <3 (no activity), + = 3-5 (weak activity), + + = 5-10 (moderate activity), + + + = 10-15 (strong activity), + + + + = >15. (Standard): $C_1 = Ciprofloxacin (Zone of inhibition = 18 mm)$ for antibacterial activity; $C_2 = Fluconazole$ (Zone of inhibition = 15 mm) for antifungal activity.

3. Antimicrobial activity

The title compounds (**5a–r**) were screened for their antibacterial and antifungal activities using cup and well method [21, 22]. Antibacterial activity of compounds (500 μ g/ml) have been evaluated against four bacterial strain viz. *K. pneumoniae, P. aeruginosa, S. aureus* and *B. subtilis*. Almost all the compounds showed low to moderate activity against *K. pneumoniae, P. aeruginosa* and *S. aureus*. Majority of the compounds were inactive against *B. subtilis* as compared to the standard drug (Ciprofloxacin) used. Screening of the title compounds (500 μ g/ml) for antifungal activity was carried out against two fungal strain viz. *A. fumigatus* and *C. albicans* using flucanazole as a standard drug. Compounds **5a**, **5f**, **5h**, **5l** and **5j** were highly active against *A. fumigatus* and other were good active. While compounds **5b**, **5c**, **5e**, **5o**, **5q**, and **5r** have not exhibited appreciable activity against *A. fumigatus* but these were found to be moderately active against *C. albicans* (table 3). Although the antibacterial and antifungal activity could not be directly related to the structure, yet some conclusions can be drawn that all the compounds showed good antifungal activity and increased antimicrobial activity was observed when an electron withdrawing group attached to phenyl ring but activity was found to decrease when an electron donating group was present in phenyl ring.

4. Experimental

Melting points of all synthesized compounds were determined in open capillary tube and are uncorrected. IR spectra (KBr) and ¹H NMR spectra (DMSO-d₆) were recorded on FTIR RXI Perkin-Elmer 1800 spectrophotometer and DRX-300 (300 MHz) spectrophotometer using TMS as internal standard, respectively and mass spectra were recorded on a Jeol SX-102

(FAB) spectrometer. The purity of compounds was checked by elemental analysis and also by TLC using silica gel "G", as adsorbent and visualization was accomplished by Iodine.

Compounds **1a–c** were synthesized by literature methods [23]. Physical and analytical data of the synthesized compounds are given in table 1.

4.1 Synthesis of 1,3-thiazolidin-2,4-dione: (2)

A mixture of thiourea (0.5 mole), in ethanol and chloroacetic acid (0.6 mole) was refluxed for 5 hours. It was allowed to cool; separated solid was filtered and washed with ethanol. The crude hydrochloride obtained was dissolved in boiling water (75 ml) after 24 hours the separated crystal was filtered and refluxed for 2 hours in aqueous KOH (20%, 15 ml). The reaction mixture was cooled and poured into dilute acetic acid (1:1, 50 ml). The precipitated solid was filtered and recrystallised from ethanol.

4.2 Synthesis of substituted 5-benzylidene-1, 3-thiazolidine-2, 4-Dione: (3a-c)

Compound 2 (0.05 mole), glacial acetic acid 30 ml, fused sodium acetate (0.05 mole) and arylaldehyde (0.05 mole) were refluxed for 6 hours. After cooling, reaction mixture was slowly poured into crushed ice and yellow solid obtained was filtered and washed with ethanol. The crude solid mass was recrystallised from glacial acetic acid.

4.3 Synthesis of 2-{[-5-(substituted benzylidine)-2,4-dioxo-1,3-thiazolidine-3-yl]alkoxy}-1H-isoindole-1,3(2H)-dione: (4a-i)

To a three necked flask, provided with a reflux condenser, a dropping funnel and a mechanical stirrer, a solution of compound **3a–d** (0.01 mole), ω -bromoalkoxypthalimide (0.01 mole) in absolute alcohol were charged. To this stirred solution pyridine (4 ml). was added dropwise and the mixture was refluxed for 15–18 hrs. After cooling, excess of solvent was removed under reduced pressure. The separated solid was filtered, dried and recrystallised from ethanol (tables 1 and 2).

4.4 Synthesis of 2-[5-oxo-2,3-disubstituted diphenyl-2H-pyrazolo[3,4-d][1,3]thiazol-6 (5H)-yl) alkoxy]-1H-isoindole-1,3(2H)-dione: (5a-r)

In a three necked flask., an equimolar amount of compound **4a–i** (0.05 mole) and substituted phenyl hydrazine (0.05 mole) were dissolved in DMF (15 ml). To this stirred solution, 5% KOH (4–6 ml) was added dropwise during 30–40 min and reaction mixture was refluxed for 5–8 hr. After cooling, the reaction mixture was poured slowly onto crushed ice with stirring. The solid product so obtained was filtered, washed, dried and crystallised from glacial acetic acid to yield compounds **5a–r** (tables 1 and 2).

Acknowledgements

The authors are thankful to The Head, Department of Chemistry, M. L. Sukhadia University, Udaipur for providing laboratory facilities, The Director, CDRI, Lucknow for providing spectral and analytical data and Incharge, Department of Biotechnology, M. L. Sukhadia University, Udaipur for antimicrobial studies. One of the authors (VKS) is thankful to CSIR, New Delhi for providing essential financial support.

References

- [1] C.B. Frances. Chem. Rev., 61, 464 (1961).
- [2] M.S.R. Murthy, D.V. Ro, E.V. Rao. J. Pharma. Sci., 45, 638 (1978).
- [3] R. Lesyk, O. Vladzimirsk, B. Zimenkovsky, V. Horishny, I. Nektegayev, M.L. Cherpark, O. Kozak. Boll. Chim. Farm., 144, 197 (2002).
- [4] P.K. Sharma, S.N. Sawhney. Bioorg. Med. Chem. Lett., 7, 2427 (1997).
- [5] N.B. Das, A.S. Mittra. Ind. J. Chem., 16B, 638 (1978).
- [6] S.P. Sachchar, A.K. Singh. J. Indian Chem. Soc., 62, 142 (1985).
- [7] K.D. Patel, B.D. Mistry, K.R. Desai. J. Indian Chem. Soc., 18, 783 (2004).
- [8] N.C. Desai, H.K. Shukla, K.A. Thaker. J. Indian Chem. Soc., 61, 239 (1984).
- [9] R.B. Lesyk, B.S. Zimenkovsky. Curr. Org. Chem., 8, 1547 (2004).
- [10] S.S. Korgaokar, P.H. Patil, M.T. Shah, H.H. Parekh. Indian J. Pharm. Sci., 58, 222 (1996).
- [11] R. Jain, N.R.N. Goyal, S. Agrawal. J. Indian Chem. Soc., 58, 203 (1981).
- [12] J.L. Huppatz. Aust. J. Chem., 36, 135, (1983).
- [13] K. Joshi, V.N. Pathak, S. Sharma. J. Indian Chem. Soc., 61, 1014 (1954).
- [14] F. Bandavalli, O. Bruno, A. Ranise, C. Losasso, D. Donnoli, L. Stella, E. Marmot. Farmaco, 45, 137, (1990).
- [15] D. Nauduri, G.B. Reddy. Chem. Pharm. Bull., 46, 1254 (1998)
- [16] P. Mamalis. *Xenobiotica*, **1**, 569 (1971).
- [17] B.J. Berger. Antimicrob Agents Ch., 14, 2540 (2000).
- [18] G.A. Rosential, D.L. Dahlman. J. Biol. Chem., 265, 868 (1990).
- [19] T. Banu, S. Rajora, D. Khatri, G.L. Talesara. J. Indian Chem. Soc., 77, 300 (2000).
- [20] A.A. Bekhit, H.T. Fahmy. Arch. Pharm. (Weinheim), 336, 111 (2003).
- [21] P.S. Bisen, K. Verma. Hand Book of Microbiology, 1st edition, CBS Publications and Distributors, New Delhi (1998).
- [22] S.E. Joon. Clinical Becteria, 4th edition, p. 226, Edward Arnold, London (1975).
- [23] L. Bauer, K.S. Suresh. J. Org. Chem., 28, 1604 (1963).